That’s good. My switching frequency is a few times per hour.
I am a little bit concerned that the slow rise/fall time make the MOSFET go outside its operating parameters for a fraction of a second. The resistance gradually changes meaning the mosfet will dissipate more power but also less current will flow.
So if you switch many times per second the gate capacitance with the resistor acts as a low pass filter reducing the gate voltage.
Yes that I found as well but have/had trouble understanding why it would be built like this. Also why a MOSFET would be designed internally like this. If you want more power capability you’d get a bigger MOSFET rather than two tiny ones in parallel right?
This page helped me understand the setup. I’ll post it here just for informational purpose. It took me a while to find this. https://electronics.stackexchange.com/questions/203463/dual-mosfet-8205a-lithium-battery-protection-circuit
It’s related to the internal body diode of the N channel mosfet, so two of them are in series but reversed. When one MOSFET is activated, current may flow easily in one direction but be reduced by the body diode of the other. When both are activated, current may flow easily in either direction.
It seems they don’t really prevent discharging or charging separately due to the body diodes but they can cut off the battery alltogether.