The Many Worlds interpretation is rather unconvincing to me for many reasons.
|1| It claims it is “simpler” just by dropping the Born rule, but it is mathematically impossible to derive the Born rule from the Schrodinger equation alone. You must include some additional assumption to derive it, and so it ends up necessarily having to introduce an additional postulate at some point to derive the Born rule from. Its number of assumptions thus always equal that of any other interpretation but with additional mathematical complexity caused by the derivation.
|2| It claims to be “local” because there is no nonlocal wavefunction collapse. But the EPR paper already proves it’s mathematically impossible for something to match the predictions of quantum theory and be causally local if there are no hidden variables. This is obscured by the fact that MWI proponents like to claim the Born rule probabilities are a subjective illusion and not physically real, but illusions still have a physical cause that need to be physically explained, and any explanation you give must reproduce Born rule probabilities, and thus must violate causal locality. Some MWI proponents try to get around this by redefining locality in terms of relativistic locality, but even Copenhagen is local in that sense, so you end up with no benefits over Copenhagen if you accept that redefinition.
|3| It relies on belief that there exists an additional mathematical entity Ψ as opposed to just ψ, but there exists no mathematical definition or derivation of this entity. Even Everett agreed that all the little ψ we work with in quantum theory are relative states, but then he proposes that there exists an absolute universal Ψ, but to me this makes about as much sense as claiming there exists a universal velocity in Galilean relativity. There is no way to combine relative velocities to give you a universal velocity, they are just fundamentally relative. Similarly, wavefunctions in quantum mechanics are fundamentally relative. A universal wavefunction does not meaningfully exist.
|4| You describe MWI as kind of a copying of the world into different branches where different observers see different outcomes of the experiment, but that is not what MWI actually claims. MWI claims the Born rule is a subjective illusion and all that exists is the Schrodinger equation, but the Schrodinger equation never branches. If, for example, a photon hits a beam splitter with a 50% chance of passing through and a 50% chance of being reflected and you have a detector on either side, the Schrodinger equation will never evolve into a state that looks anything like it having past through or it having been reflected, nor will it ever evolve into a state that looks anything like it having past through and it having been reflected. The state it evolves into is entirely disconnected from the discrete states we actually observe except through the Born rule. Indeed, even those probabilities I gave you come from the Born rule.
This was something Einstein pointed out in relation to atomic decay, that no matter how long you evolve the Schrodinger equation, it never evolves into a state that looks anything like decay vs non-decay. You never get to a state that looks like either or, both, or neither. You end up with something entirely unrecognizable from what we would actually observe in an experiment, only connected back to the probabilities of decay vs non-decay by the Born rule. If the universe really is just the Schrodinger equation, you simply cannot say that it branches into two “worlds” where in one you see one outcome and in another you see a different outcome, because the Schrodinger equation never gives you that. You would have to claim that the entire world consists of a single evolving infinite-dimensional universal wavefunction that is nothing akin to anything we have ever observed before.
There is a good lecture below by Maudlin on this problem, that MWI presents a theory which has no connection to observable reality because nothing within the theory contains any observables.
The gigantic, universal ψ wave that contains all the possible worlds is like Hegel’s dark night in which all cows are black: it does not account, per se, for the phenomenological reality that we actually observe. In order to describe the phenomena that we observe, other mathematical elements are needed besides ψ: the individual variables, like X and P, that we use to describe the world. The Many Worlds interpretation does not explain them clearly. It is not enough to know the ψ wave and Schrödinger’s equation in order to define and use quantum theory: we need to specify an algebra of observables, otherwise we cannot calculate anything and there is no relation with the phenomena of our experience. The role of this algebra of observables, which is extremely clear in other interpretations, is not at all clear in the Many Worlds interpretation.
— Carlo Rovelli, “Helgoland: Making Sense of the Quantum Revolution”
First, working in terms of decoherence is significantly simpler than worrying about whether something has been measured or not at every single step of the evolution of a system, because I have observed that when people do the latter they tend to get headaches contemplating the meaning of the “quantum eraser” when there is no need to. Second, you actually can observe Born’s rule in action by modeling the evolution of a system with an experimenter performing measurements and watching it emerge from the calculation.
The only way that the two sides of the EPR pair know that they agree or disagree is by communicating with each other and comparing results, which can only happen through local interactions.
I have no idea what you even mean by this. What makes the (terribly named) Many Worlds Interpretation nice is precisely that you can just treat everything as a wave function, with parts that might be entangled in ways you don’t know about (i.e., decoherence, modeled via density matrices).
The fact that you are even making this claim is why I have trouble taking the rest of your comment seriously at all, because I specifically said, “However, it is important to understand that the concept of branches is just a visualization; it is nothing inherent to the theory, and when things get even slightly more complicated than the situation I have described, they do not meaningfully exist at all.”
Not sure what this first point means. To describe decoherence you need something like density matrix notation or Liouville notation which is mathematically much more complicated. For example, a qubit’s state vector grows by 2^N, but if you represent it in Liouville notation then the vector grows by 4^N. It is far more mathematically complicated as a description, but I don’t really see why that matters anyways as it’s not like I reject such notation. Your second point also agrees with me. We know the Born rule is real because we can observe real outcomes on measurement devices, something which MWI denies exists and something you will go on to deny in your point #4
This is also true in Copenhagen. Again, if that’s your criterion for locality then Copenhagen is also local.
I think you should read Everett’s papers “‘Relative State’ Formulation of Quantum Mechanics” and “The Theory of the Universal Wave Function” to see the difference between wavefunctions defined in a relative sense vs a universal sense. You will encounter this with any paper on the topic. I’m a bit surprised you genuinely have never heard of the concept of the universal wavefunction yet are defending MWI?
That quotation does not come one iota close to even having the air of giving the impression of loosely responding to what I wrote. You are not seriously engaging with what I wrote at all. You denying the physical existence of real-world discrete outcomes is exactly what I am criticizing, so just quoting yourself denying it is only confirming my point.
A simpler way of stating my point is that entanglement is sufficient to understand measurement, and more importantly, what phenomena are “measurement-like” and which aren’t. Also, you missed my point regarding the Born rule. You can write down a mathematical model of an experimenter repeating an experiment and recording their measurements, turn the crank, and see the probabilities predicted by the Born rule fall out, without any experiment ever having taken place.
I am confused, then, about what we are supposedly even arguing about here. (Are you sure you are even arguing with me, rather than someone else?)
I did some searching and I think that what you are calling “relative states” is an older term for what we now call “entangled states”. Being entangled with another system implies (by definition) that there is a greater system containing you and the other system, and so on, which is how you end up with a universal system that contains everything. However, we do not actually believe that reality is dictated by quantum mechanics but by quantum field theory, which is manifestly built on top of special relativity and posits a single field for each kind of particle for the entire Universe, and describes the microscopic behavior so well that it is absurd. Of course, the next step is figuring out how to reconcile this with general relativity, but that isn’t something Copenhagen helps you out with either.
First you criticize the way that I talked about branches, which I only mentioned briefly as a sort of crude visualization and explicitly called out as being such. Now you are claiming that I am “denying the physical existence of real-world discrete outcomes”?
Entanglement is just a mathematical property of the theory. If it is sufficient to explain measurement then there is not anything particularly unique about MWI since you can employ this explanation within anything. You also say I missed your point by repeating exactly what I said.
You’re the one giving this bullet point list as if you are debunking all of my points one-by-one. If you agree there is nothing especially “more local” about MWI than any other interpretation then why not just ignore that point and move on?
A relative state is not an entangled state. Again you need to read the papers I linked. We are talking about observer-dependence in the sense of how the velocity of a train in Galilean relativity can be said to have a different value simultaneously for two different observers. I drew the direct comparison here in order to explain that in my first comment. This isn’t about special relativity or general relativity, but about “relativity” in a more abstract sense of things which are only meaningfully defined as a relational property between systems. The quantum state observer A assigns to a system can be different from the quantum state observer B assigns to the system (see the Wigner’s friend thought experiment). The quantum state in quantum mechanics is clearly relative in this sense, and to claim there is a universal quantum state requires an additional leap which is never mathematically justified.
Please for the love of god just scroll up and read what I actually wrote in that first post and respond to it. Or don’t. You clearly seem to be entirely uninterested in a serious conversation. I assume you have an emotional attachment to MWI without even having read Everett’s papers and getting too defensive that you refuse to engage seriously in anything I say, so I am ending this conversation here. You don’t even know what a universal wavefunction is despite that being the title of Everett’s paper and are trying to lecture me about this subject without even reading a word I have written, claiming that the opinions of the cited academics here are “not even worth taken seriously.” This is just an enormous level of arrogance that isn’t worth engaging with.
I assume you have an emotional attachment to MWI without even having read Everett’s papers and getting too defensive that you refuse to engage seriously in anything I say, so I am ending this conversation here.
Uhh, okay. Like, you were the one who felt the need to go on the attack here, but if you need to stop for your mental health than so be it. 🙂
The Many Worlds interpretation is rather unconvincing to me for many reasons.
|1| It claims it is “simpler” just by dropping the Born rule, but it is mathematically impossible to derive the Born rule from the Schrodinger equation alone. You must include some additional assumption to derive it, and so it ends up necessarily having to introduce an additional postulate at some point to derive the Born rule from. Its number of assumptions thus always equal that of any other interpretation but with additional mathematical complexity caused by the derivation.
|2| It claims to be “local” because there is no nonlocal wavefunction collapse. But the EPR paper already proves it’s mathematically impossible for something to match the predictions of quantum theory and be causally local if there are no hidden variables. This is obscured by the fact that MWI proponents like to claim the Born rule probabilities are a subjective illusion and not physically real, but illusions still have a physical cause that need to be physically explained, and any explanation you give must reproduce Born rule probabilities, and thus must violate causal locality. Some MWI proponents try to get around this by redefining locality in terms of relativistic locality, but even Copenhagen is local in that sense, so you end up with no benefits over Copenhagen if you accept that redefinition.
|3| It relies on belief that there exists an additional mathematical entity Ψ as opposed to just ψ, but there exists no mathematical definition or derivation of this entity. Even Everett agreed that all the little ψ we work with in quantum theory are relative states, but then he proposes that there exists an absolute universal Ψ, but to me this makes about as much sense as claiming there exists a universal velocity in Galilean relativity. There is no way to combine relative velocities to give you a universal velocity, they are just fundamentally relative. Similarly, wavefunctions in quantum mechanics are fundamentally relative. A universal wavefunction does not meaningfully exist.
|4| You describe MWI as kind of a copying of the world into different branches where different observers see different outcomes of the experiment, but that is not what MWI actually claims. MWI claims the Born rule is a subjective illusion and all that exists is the Schrodinger equation, but the Schrodinger equation never branches. If, for example, a photon hits a beam splitter with a 50% chance of passing through and a 50% chance of being reflected and you have a detector on either side, the Schrodinger equation will never evolve into a state that looks anything like it having past through or it having been reflected, nor will it ever evolve into a state that looks anything like it having past through and it having been reflected. The state it evolves into is entirely disconnected from the discrete states we actually observe except through the Born rule. Indeed, even those probabilities I gave you come from the Born rule.
This was something Einstein pointed out in relation to atomic decay, that no matter how long you evolve the Schrodinger equation, it never evolves into a state that looks anything like decay vs non-decay. You never get to a state that looks like either or, both, or neither. You end up with something entirely unrecognizable from what we would actually observe in an experiment, only connected back to the probabilities of decay vs non-decay by the Born rule. If the universe really is just the Schrodinger equation, you simply cannot say that it branches into two “worlds” where in one you see one outcome and in another you see a different outcome, because the Schrodinger equation never gives you that. You would have to claim that the entire world consists of a single evolving infinite-dimensional universal wavefunction that is nothing akin to anything we have ever observed before.
There is a good lecture below by Maudlin on this problem, that MWI presents a theory which has no connection to observable reality because nothing within the theory contains any observables.
Rovelli also comments on it:
First, working in terms of decoherence is significantly simpler than worrying about whether something has been measured or not at every single step of the evolution of a system, because I have observed that when people do the latter they tend to get headaches contemplating the meaning of the “quantum eraser” when there is no need to. Second, you actually can observe Born’s rule in action by modeling the evolution of a system with an experimenter performing measurements and watching it emerge from the calculation.
The only way that the two sides of the EPR pair know that they agree or disagree is by communicating with each other and comparing results, which can only happen through local interactions.
I have no idea what you even mean by this. What makes the (terribly named) Many Worlds Interpretation nice is precisely that you can just treat everything as a wave function, with parts that might be entangled in ways you don’t know about (i.e., decoherence, modeled via density matrices).
The fact that you are even making this claim is why I have trouble taking the rest of your comment seriously at all, because I specifically said, “However, it is important to understand that the concept of branches is just a visualization; it is nothing inherent to the theory, and when things get even slightly more complicated than the situation I have described, they do not meaningfully exist at all.”
A simpler way of stating my point is that entanglement is sufficient to understand measurement, and more importantly, what phenomena are “measurement-like” and which aren’t. Also, you missed my point regarding the Born rule. You can write down a mathematical model of an experimenter repeating an experiment and recording their measurements, turn the crank, and see the probabilities predicted by the Born rule fall out, without any experiment ever having taken place.
I am confused, then, about what we are supposedly even arguing about here. (Are you sure you are even arguing with me, rather than someone else?)
I did some searching and I think that what you are calling “relative states” is an older term for what we now call “entangled states”. Being entangled with another system implies (by definition) that there is a greater system containing you and the other system, and so on, which is how you end up with a universal system that contains everything. However, we do not actually believe that reality is dictated by quantum mechanics but by quantum field theory, which is manifestly built on top of special relativity and posits a single field for each kind of particle for the entire Universe, and describes the microscopic behavior so well that it is absurd. Of course, the next step is figuring out how to reconcile this with general relativity, but that isn’t something Copenhagen helps you out with either.
First you criticize the way that I talked about branches, which I only mentioned briefly as a sort of crude visualization and explicitly called out as being such. Now you are claiming that I am “denying the physical existence of real-world discrete outcomes”?
Uhh, okay. Like, you were the one who felt the need to go on the attack here, but if you need to stop for your mental health than so be it. 🙂