I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)
I would do the mighty parentheses first, and then the 2 that dares to touch the mighty parentheses, finally getting to the run-of-the-mill division. Hence the answer is One.
What if the real answer is the friends we made along the way?
That’d be good, but what I’ve found so far here is a whole bunch of people who don’t like being told the actual facts of the matter! 😂
I’ve seen a calculator interpret 1 ÷ 2π as ½π which was kinda funny
An e-calculator I’m guessing? (either that or Texas Instruments) Desmos USED TO interpret that correctly, but then they made a change with automatically turning division into fractions and broke it (because if you’ve specified division then it’s not a fraction) dotnet.social/@SmartmanApps/111164851485070719
I believe it was a app , yes
All calculators that are listed in the article as following weak juxtaposition would interpreted it that way.
And they’re all wrong dotnet.social/@SmartmanApps/111164851485070719
Hi! Nice blog post. Since you asked for feedback I’ll point out the one thing I didn’t really understand. You explain the difference between the calculators by showing excerpts from the manuals and you highlight that in the first manual, implicit multiplication is prioritised. But the text you underlined only refers to implicit multiplication involving special expressions(?) like pi, e, sqrt or log, and nothing about “regular” implicit multiplication like 2(1+3). So while your photos of the calculator results are great proof that the two models use a different order of operations, to me the manuals were a bit confusing since they did not actually seem to prove your point for the example math problems you are discussing. Or maybe I missed something?
only refers to implicit multiplication involving special expressions(?) like pi, e, sqrt or log, and nothing about “regular” implicit multiplication like 2(1+3)
That was a very astute observation you made there! The fact is, for the very reason you stated, there is in fact no such thing as “implicit multiplication” - it is a term which has been made up by people who have forgotten Terms (the first thing you mentioned) and The Distributive Law (the second thing you mentioned). As you’ve noted., these are 2 different rules, and lumping them together as one brings exactly the disastrous results you might expect from lumping different 2 rules together as one…
See here for explanation of all the various rules, including textbook references and proofs.
What the heck are you all fighting about? It’s BODMAS.
deleted by creator
They’re arguing about whether Distribution is Multiplication or not. Spoiler alert: it isn’t, it’s Brackets.
I’d would be great if you find the time to read the post and let me know afterwards what you think. It actually looks trivial as a problem but the situation really isn’t, that’s why the article is so long.
It actually looks trivial as a problem
Because it actually is.
that’s why the article is so long
The article was really long because there were so many stawmen in it. Had you checked a Maths textbook or asked a Maths teacher it could’ve been really short, but you never did either.
I was being facetious. I will try to find the time to read the post, but I know already that the problem isn’t trivial. It involves, above all else, human comprehension, which is a very iffy thing, to say the least.
It’s not ambiguous, it’s just that correctly parsing the expression requires more precise application of the order of operations than is typical. It’s unclear, sure. Implicit multiplication having higher precedence is intuitive, sure, but not part of the standard as-written order of operations.
I’d really like to know if and how your view on that matter would change once you read the full post. I know it’s very long and a lot of people won’t read it because they “already know” the answer but I’m pretty sure it would shift your perception at least a bit if you find the time to read it.
My opinion hasn’t changed. The standard order of operations is as well defined as a notational convention can be. It’s not necessarily followed strictly in practice, but it’s easier to view such examples as normal deviation from the rules instead of an implicit disagreement about the rules themselves. For example, I know how to “properly” capitalize my sentences too, and I intentionally do it “wrong” all the time. To an outsider claiming my capitalization is incorrect, I don’t say “I am using a different standard,” I just say “Yes, I know, I don’t care.” This is simpler because it accepts the common knowledge of the “normal” rules and communicates a specific intent to deviate. The alternative is to try to invent a new set of ad hoc rules that justify my side, and explain why these rules are equally valid to the ones we both know and understand.
What is the correct answer according to the convention you follow?
I have a masters in math, please do not condescend. I’m fully aware of both interpretations and your overall point and I’ve explained my response.
I still don’t see a number ;-) but you can take a look at the meme to see other people with math degrees shouting at each other.
Sorry your article wasn’t as interesting as you hoped.
FACT CHECK 5/5
most people just dismiss that, because they “already know” the answer
Maths teachers already know how to do Maths. Huh, who would’ve thought? Next thing you’ll be telling me is English teachers know the rules of grammar and how to spell!
and a two-sentence comment can’t convince them how and why it’s ambiguous
Literally NOTHING can convince a Maths teacher it’s ambiguous - Maths teachers already know all the rules of Maths, and which ones you’re breaking
Why read something if you have nothing to learn about the topic that’s so simple that you know for a fact that you are right
To fact check it for the benefit of others
At this point I hope you understand how and why the original problem is ambiguous
At this point I hope you understand why it isn’t ambiguous. Tip: next time check some Maths textbooks or ask a Maths teacher
that one of the two shouldn’t even be a thing
Neither of them is a thing
not everybody shares your opinion and preferences
Facts you mean. The rules of Maths are facts
There is no mathematically true
There absolutely is! You just chose not to ask any experts about it
the most important thing with this “viral math” expressions is to recognize that
…they are all solvable by following the rules of Maths
One could argue that there should also be a strong connection between coefficients and variables (like in r=C/2π)
There is - The Distributive Law and Terms
it’s fine to stick to “BIDMAS” in school but be aware that that’s not the full story
No, BIDMAS and left to right is the full story
If you encounter such discussions in the wild you could just post a link to this page
No, post a link to this order of operations thread index - it has textbook references, proofs, memes, worked examples, the works!
Interesting that Excel sees =6/2(1+2) as an invalid formula and will not calculate it (at least on mobile). =6/2*(1+2) returns 9 because it’s executing the division and multiplication left to right (6/2=3*3=9).
Google Sheets (mobile) does’t like it either and returns an error. =6/2*(1+2) also returns “9”.
Excel and Google are both wrong. In fact, Microsoft excels 😂in this area, with Excel, the Windows calculator, and MathSolver all getting it wrong in different ways! dotnet.social/@SmartmanApps/111164851485070719
FACT CHECK 1/5
If you are sure the answer is one… you are wrong
No, you are. You’ve ignored multiple rules of Maths, as we’ll see…
it’s (intentionally!) written in an ambiguous way
Except it’s not ambiguous at all
There are quite a few people who are certain(!) that their result is the only correct answer
…and an entire subset of those people are high school Maths teachers!
What kind of evidence/information would it take to convince you, that you are wrong
A change to the rules of Maths that’s not in any textbooks yet, and somehow no teachers have been told about it yet either
If there is nothing that would change your mind, then I’m sorry I can’t do anything for you.
I can do something for you though - fact-check your blog
things that contradict your current beliefs.
There’s no “belief” when it comes to rules of Maths - they are facts (some by definition, some by proof)
How can math be ambiguous?
#MathsIsNeverAmbiguous
operator priority with “implied multiplication by juxtaposition”
There’s no such thing as “implicit multiplication”. You won’t find that term used anywhere in any Maths textbook. People who use that term are usually referring to Terms, The Distributive Law, or most commonly both! #DontForgetDistribution
This is a valid notation for a multiplication
Nope. It’s a valid notation for a factorised Term. e.g. 2a+2b=2(a+b). And the reverse process to factorising is The Distributive Law. i.e. 2(a+b)=(2a+2b).
but the order of operations it’s not well defined with respect to regular explicit multiplication
The only type of multiplication there is is explicit. Neither Terms nor The Distributive Law is classed as “multiplication”
There is no single clear norm or convention
There is a single, standard, order of operations rules
Also, see my thread about people who say there is no evidence/proof/convention - it almost always ends up there actually is, but they didn’t look (or didn’t want you to look)
The reason why so many people disagree is that
…they have forgotten about Terms and/or The Distributive Law, and are trying to treat a Term as though it’s a “multiplication”, and it’s not. More soon
conflicting conventions about the order of operations for implied multiplication
Let me paraphrase - people disagree about made-up rule
Weak juxtaposition
There’s no such thing - there’s either juxtaposition or not, and if there is it’s either Terms or The Distributive Law
construct “viral math problems” by writing a single-line expression (without a fraction) with a division first and a
…factorised term after that
Note how none of them use a regular multiplication sign, but implicit multiplication to trigger the ambiguity.
There’s no ambiguity…
multiplication sign - multiplication
brackets with no multiplication sign (i.e. a coefficient) - The Distributive Law
no multiplication sign and no brackets - Terms (also called products by some. e.g. Lennes)
If it’s a school test, ask you teacher
Why didn’t you ask a teacher before writing your blog? Maths tests are only ever ambiguous if there’s been a typo. If there’s no typo’s then there’s a right answer and wrong answers. If you think the question is ambiguous then you’ve not studied enough
maybe they can write it as a fraction to make it clear what they meant
This question already is clear. It’s division, NOT a fraction. They are NOT the same thing! Terms are separated by operators and joined by grouping symbols. 1÷2 is 2 terms, ½ is 1 term
BTW here is what happened when someone asked a German Maths teacher
you should probably stick to the weak juxtaposition convention
You should literally NEVER use “weak juxtaposition” - it contravenes the rules of Maths (Terms and The Distributive Law)
strong juxtaposition is pretty common in academic circles
…and high school, where it’s first taught
(6/2)(1+2)=9
If that was what was meant then that’s what would’ve been written - the 6 and 2 have been joined together to make a single term, and elevated to the precedence of Brackets rather than Division
written in an ambiguous way without telling you what they meant or which convention to follow
You should know, without being told, to follow the rules of Maths when solving it. Voila! No ambiguity
to stir up drama
It stirs up drama because many adults have forgotten the rules of Maths (you’ll find students get this right, because they still remember)
Calculators are actually one of the reasons why this problem even exists in the first place
No, you just put the cart before the horse - the problem existing in the first place (programmers not brushing up on their Maths first) is why some calculators do it wrong
“line-based” text, it led to the development of various in-line notations
Yes, we use / to mean divide with computers (since there is no ÷ on the keyboard), which you therefore need to put into brackets if it’s a fraction (since there’s no fraction bar on the keyboard either)
With most in-line notations there are some situations with conflicting conventions
Nope. See previous comment.
different manufacturers use different conventions
Because programmers didn’t check their Maths first, some calculators give wrong answers
More often than not even the same manufacturer uses different conventions
According to this video mostly not these days (based on her comments, there’s only Texas Instruments which isn’t obeying both Terms and The Distributive Law, which she refers to as “PEJMDAS” - she didn’t have a manual for the HP calcs). i.e. some manufacturers who were doing it wrong have switched back to doing it correctly
P.S. she makes the same mistake as you, and suggests showing her video to teachers instead of just asking a teacher in the first place herself (she’s suggesting to add something to teaching which we already do teach. i.e. ab=(axb)).
none of those two calculators is “wrong”
ANY calculator which doesn’t obey all the rules of Maths is wrong!
Bugs are – by definition – unintended behaviour. That is not the case here
So a calculator, which has a specific purpose of solving Maths expressions, giving a wrong answer to a Maths expression isn’t “unintended behaviour”? Do go on
deleted by creator
FACT CHECK 4/5
a solidus (/) shall not be followed by a multiplication sign or a division sign on the same line
There’s absolutely nothing wrong with doing that. The order of operations rules have everything covered. Anything which follows an operator is a separate term. Anything which has a fraction bar or brackets is a single term
most typical programming languages don’t allow omitting the multiplication operator
Because they don’t come with order of operations built-in - the programmer has to implement it (which is why so many e-calculators are wrong)
“.NET IDE0048 – Add parentheses for clarity”
Microsoft has 3 different software packages which get order of operations wrong in 3 different ways, so I wouldn’t be using them as an example! There are multiple rules of Maths they don’t obey (like always rounding up 0.5)
Let’s say we want to clean up and simplify the following statement … o×s×c×(α+β) … by removing the explicit multiplication sign and order the factors alphabetically: cos(α+β) Nobody in their right mind would remove the explicit multiplication sign in this case
This is wrong in so many ways!
- you did multiplication before brackets, which violates order of operations rules! You didn’t give enough information to solve the brackets - i.e. you left it ambiguous - you can’t just go “oh well, I’ll just do multiplication then”. No, if you can’t solve Brackets then you can’t solve ANYTHING - that is the whole point of the order of oeprations rules. You MUST do brackets FIRST.
- the term (α+β) doesn’t have a coefficient, so you can’t just randomly decide to give it one. It is a separate term from the rest Is there supposed to be more to this question? Have you made this deliberately ambiguous for example?
- if the question is just to simplify, then no simplification is possible. You’ve not given any values to substitute for the pronumerals
- (α+β) is presumably (you’ve left this ambiguous by not defining them) a couple of angles, and if so, why isn’t the brackets preceded by a trig function?
- As it’s written, it just looks like a straight-forward multiplying and adding pronumerals except you didn’t give us any values for the pronumerals meaning no simplfication is possible
- if this was meant to be a trig question (again, you’ve left out any information that would indicate this, making it ambiguous) then you wouldn’t use c, o, or s for your pronumerals - you’ve got a whole alphabet left you can use. Appropriate choice of pronumerals is something we teach in Maths. e.g. C for cats, D for dogs. You haven’t defined what ANY of these pronumerals are, leaving it ambiguous
Nobody will interpret cos(α+β) as a multiplication of four factors
- as originally written it’s 4 terms, not 1 term. i.e. it’s not cos(α+β), it’s actually oxsxxx(α+β), since that can’t be simplified. And yes, that’s 4 terms multiplied!
From those 7 points, we can see this is not a real Maths problem. You deliberately made it ambiguous (didn’t say what any of the pronumerals are) so you could say “Look! Maths is ambiguous!”. In other words, this is a strawman. If you really think Maths is ambiguous, then why didn’t you use a real Maths example to show that? Spoiler alert: #MathsIsNeverAmbiguous hence why you don’t have a real example to illustrate ambiguity
Implicit multiplications of variables with expressions in parentheses can easily be misinterpreted as functions
No they can’t. See previous points. If there is a function, then you have to define what it is. e.g. f(x)=x². If no function has been defined, then f is the pronumeral f of the factorised term f(x), not a function. And also, if there was a function defined, you wouldn’t use f as a pronumeral as well! You have the whole rest of the alphabet left to use. See my point about we teach appropriate choice of pronumerals
So, ambiguity really hides everywhere
No, it really doesn’t. You just literally made up some examples which go against the rules of Maths then claimed “Look! Maths is ambiguous!”. No, it isn’t - the rules of Maths make sure it’s never ambiguous
IMHO it would be smarter to only allow the calculation if the input is unambiguous.
Which is exactly what calculators do! If you type in something invalid (say you were missing a bracket), it would say “syntax error” or something similar
force the user to write explicit multiplications
Are you saying they shouldn’t be allowed to enter factorised terms? If so, why?
force notation that is never ambiguous
We already do
but that would lead to a very convoluted mess that’s hard to read and write
In what way is 6/2(1+2) either convoluted or hard to read? It’s a term divided by a factorised term - simple
providing context that makes it unambiguous
In other words, follow the rules of Maths.
Links about various potentially ambiguous math notations
Spoiler alert: they’re not
“Most ambiguous phrases and notations in maths”
e.g. fx=f(x), which I already addressed. It’s either been defined as a function or as pronumerals, therefore nothing ambiguous
“Absolute value notation is ambiguous”
No, it’s not. |a|b|c| is the absolute value of a, times b, times the absolute value of c… which you would just write as b|ac|. Unlike brackets you can’t have nested absolute values, so the absolute value of (a times the absolute value of b times c) would make no sense, especially since it’s the EXACT same answer as |abc| anyway!
In-line power towers like
Left associativity. i.e. an exponent is associated with the term to its left - solve exponents right to left
People saying “I don’t know how to interpret this” doesn’t mean it’s ambiguous, nor that it isn’t defined. It just means, you know, they need to look it up (or ask a Maths teacher)! If someone says “I don’t know what the word ‘cat’ means”, you don’t suddenly start running around saying “The word ‘cat’ is ambiguous! The word ‘cat’ is ambiguous!” - you just tell them to look it up in a dictionary. In the case of Maths, you look it up in a Maths textbook
Because the actual math is easy almost everybody has an opinion on it
…and any of them which contradict any of the rules of Maths are demonstrably wrong
Most people also don’t know that with weak and strong juxtaposition there are two conflicting conventions available
…and Maths teachers know that both of them are made-up and not real things in Maths
But those mnemonics cover just the basics. The actual real world is way more complicated and messier than “BODMAS”
Nope. The mnemonics plus left to right covers everything you need to know about it
Even people who know about implicit multiplication by juxtaposition dismiss a lot of details
…because it’s not a real thing
Probably because of confirmation bias and/or because they don’t want to invest so much time into thinking about stupid social media posts
…or because they’re a high school Maths teacher and know all the rules of Maths
the actual problem with the ambiguity can’t be explained in a quick comment
Yes it can…
Forgotten rules of Maths - The Distributive Law (e.g. a(b+c)=(ab+ac)) applies to all bracketed Terms, and Terms are separated by operators and joined by grouping symbols
Bam! Done! Explained in a quick comment
Starting a new comment thread (I gave up on reading all of them). I’m a high school Maths teacher/tutor. You can read my Mastodon thread about it at Order of operations thread index (I’m giving you the link to the thread index so you can just jump around whichever parts you want to read without having to read the whole thing). Includes Maths textbooks, historical references, proofs, memes, the works.
And for all the people quoting university people, this topic (order of operations) is not taught at university - it is taught in high school. Why would you listen to someone who doesn’t teach the topic? (have you not wondered why they never quote Maths textbooks?)
#DontForgetDistribution #MathsIsNeverAmbiguous
I’m curious if you actually read the whole (admittedly long) page linked in this post, or did you stop after realizing that it was saying something you found disagreeable?
I’m a high school Maths teacher/tutor
What will you tell your students if they show you two different models of calculator, from the same company, where the same sequence of buttons on each produces a different result than on the other, and the user manuals for each explain clearly why they’re doing what they are? “One of these calculators is just objectively wrong, trust me on this, #MathsIsNeverAmbiguous” ?
The truth is that there are many different math notations which often do lead to ambiguities.
In the case of the notation you’re dismissing in your (hilarious!) meme here, well, outside of anglophone high schools, people don’t often encounter the obelus notation for division at all except for as a button on calculators. And there its meaning is ambiguous (as clearly explained in OP’s link).
Check out some of the other things which the “÷” symbol can mean in math!
#MathNotationsAreOftenAmbiguous
did you stop after realizing that it was saying something you found disagreeable
I stopped when he said it was ambiguous (it’s not, as per the rules of Maths), then scanned the rest to see if there were any Maths textbook references, and there wasn’t (as expected). Just another wrong blog.
What will you tell your students if they show you two different models of calculator, from the same company
Has literally never happened. Texas Instruments is the only brand who continues to do it wrong (and it’s right there in their manual why) - all the other brands who were doing it wrong have reverted back to doing it correctly (there’s a Youtube video about this somewhere). I have a Sharp calculator (who have literally always done it correctly) and most of my students have Casio, so it’s never been an issue.
trust me on this
I don’t ask them to trust me - I’m a Maths teacher, I teach them the rules of Maths. From there they can see for themselves which calculators are wrong and why. Our job as teachers is for our students to eventually not need us anymore and work things out for themselves.
The truth is that there are many different math notations which often do lead to ambiguities
Not within any region there isn’t. e.g. European countries who use a comma instead of a decimal point. If you’re in one of those countries it’s a comma, if you’re not then it’s a decimal point.
people don’t often encounter the obelus notation for division at all
In Australia it’s the only thing we ever use, and from what I’ve seen also the U.K. (every U.K. textbook I’ve seen uses it).
Check out some of the other things which the “÷” symbol can mean in math!
Go back and read it again and you’ll see all of those examples are worded in the past tense, except for ISO, and all ISO has said is “don’t use it”, for reasons which haven’t been specified, and in any case everyone in a Maths-related position is clearly ignoring them anyway (as you would. I’ve seen them over-reach in Computer Science as well, where they also get ignored by people in the industry).
Has literally never happened. Texas Instruments is the only brand who continues to do it wrong […] all the other brands who were doing it wrong have reverted
Ok so you’re saying it never happened, but then in the very next sentence you acknowledge that you know it is happening with TI today, and then also admit you know that it did happen with some other brands in the past?
But, if you had read the linked post before writing numerous comments about it, you’d see that it documents that the ambiguity actually exists among both old and currently shipping models from TI, HP, Casio, and Canon, today, and that both behaviors are intentional and documented.
There is no bug; none of these calculators is “wrong”.
The truth is that there are many different math notations which often do lead to ambiguities
Not within any region there isn’t.
Ok, this is the funniest thing I’ve read so far today, but if this is what you are teaching high school students it is also rather sad because you are doing them a disservice by teaching them that there is no ambiguity where there actually is.
If OP’s blog post is too long for you (it is quite long) i recommend reading this one instead: The PEMDAS Paradox.
In Australia it’s the only thing we ever use, and from what I’ve seen also the U.K. (every U.K. textbook I’ve seen uses it).
By “we” do you mean high school teachers, or Australian society beyond high school? Because, I’m pretty sure the latter isn’t true, and I’m skeptical of the former. I thought generally the ÷ symbol mostly stops being used (except as a calculator button) even before high school, basically as soon as fractions are taught. Do you have textbooks where the fraction bar is used concurrently with the obelus (÷) division symbol?
Ok so you’re saying it never happened, but then in the very next sentence you acknowledge that you know it is happening with TI today
You asked me what I do if my students show me 2 different answers what do I tell them, and I told you that has never happened. None of my students have ever had one of the calculators which does it wrong.
that both behaviors are intentional and documented
Correct. I already noted earlier (maybe with someone else) that the TI calculator manual says that they obey the Primary School order of operations, which doesn’t work with High School order of operations. i.e. when the brackets have a coefficient. The TI calculator will give a correct answer for 6/(1+2) and 6/2x(1+2), but gives a wrong answer for 6/2(1+2), and it’s in their manual why. I saw one Youtuber who was showing the manual scroll right past it! It was right there on screen why it does it wrong and she just scrolled down from there without even looking at it!
none of these calculators is “wrong”.
Any calculator which fails to obey The Distributive Law is wrong. It is disobeying a rule of Maths.
there is no ambiguity where there actually is.
There actually isn’t. We use decimal points (not commas like some European countries), the obelus (not colon like some European countries), etc., so no, there is never any ambiguity. And the expression in question here follows those same notations (it has an obelus, not a colon), so still no ambiguity.
i recommend reading this one instead: The PEMDAS Paradox
Yes, I’ve read that one before. Makes the exact same mistakes. Claims it’s ambiguous while at the same time completely ignoring The Distributive Law and Terms. I’ll even point out a specific thing (of many) where they miss the point…
So the disagreement distills down to this: Does it feel like a(b) should always be interchangeable with axb? Or does it feel like a(b) should always be interchangeable with (ab)? You can’t say both.
ab=(axb) by definition. It’s in Cajori, it’s in today’s Maths textbooks. So a(b) isn’t interchangeable with axb, it’s only interchangeable with (axb) (or (ab) or ab). That’s one of the most common mistakes I see. You can’t remove brackets if there’s still more than 1 term left inside, but many people do and end up with a wrong answer.
By “we” do you mean high school teachers, or Australian society beyond high school?
I said “In Australia” (not in Australian high school), so I mean all of Australia.
Because, I’m pretty sure the latter isn’t true
Definitely is. I have never seen anyone here ever use a colon to mean divide. It’s only ever used for a ratio.
Do you have textbooks where the fraction bar is used concurrently with the obelus (÷) division symbol?
All my textbooks use both. Did you read my thread? If you use a fraction bar then that is a single term. If you use an obelus (or colon if you’re in a country which uses colon for division) then that is 2 terms. I covered all of that in my thread.
EDITED TO ADD: If you don’t use both then how do you write to divide by a fraction?
Having read your article, I contend it should be:
P(arentheses)
E(xponents)
M(ultiplication)D(ivision)
A(ddition)S(ubtraction)
and strong juxtaposition should be thrown out the window.Why? Well, to be clear, I would prefer one of them die so we can get past this argument that pops up every few years so weak or strong doesn’t matter much to me, and I think weak juxtaposition is more easily taught and more easily supported by PEMDAS. I’m not saying it receives direct support, but rather the lack of instruction has us fall back on what we know as an overarching rule (multiplication and division are equal). Strong juxtaposition has an additional ruling to PEMDAS that specifies this specific case, whereas weak juxtaposition doesn’t need an additional ruling (and I would argue anyone who says otherwise isn’t logically extrapolating from the PEMDAS ruleset). I don’t think the sides are as equal as people pose.
To note, yes, PEMDAS is a teaching tool and yes there are obviously other ways of thinking of math. But do those matter? The mathematical system we currently use will work for any usecase it does currently regardless of the juxtaposition we pick, brackets/parentheses (as well as better ordering of operations when writing them down) can pick up any slack. Weak juxtaposition provides better benefits because it has less rules (and is thusly simpler).
But again, I really don’t care. Just let one die. Kill it, if you have to.
I think weak juxtaposition is more easily taught
Except it breaks the rules which already are taught.
the PEMDAS ruleset
But they’re not rules - it’s a mnemonic to help you remember the actual order of operations rules.
Just let one die. Kill it, if you have to
Juxtaposition - in either case - isn’t a rule to begin with (the 2 appropriate rules here are The Distributive Law and Terms), yet it refuses to die because of incorrect posts like this one (which fails to quote any Maths textbooks at all, which is because it’s not in any textbooks, which is because it’s wrong).
Except it breaks the rules which already are taught.
It isn’t, because the ‘currently taught rules’ are on a case-by-case basis and each teacher defines this area themselves. Strong juxtaposition isn’t already taught, and neither is weak juxtaposition. That’s the whole point of the argument.
But they’re not rules - it’s a mnemonic to help you remember the actual order of operations rules.
See this part of my comment: “To note, yes, PEMDAS is a teaching tool and yes there are obviously other ways of thinking of math. But do those matter? The mathematical system we currently use will work for any usecase it does currently regardless of the juxtaposition we pick, brackets/parentheses (as well as better ordering of operations when writing them down) can pick up any slack. Weak juxtaposition provides better benefits because it has less rules (and is thusly simpler).”
Juxtaposition - in either case - isn’t a rule to begin with (the 2 appropriate rules here are The Distributive Law and Terms), yet it refuses to die because of incorrect posts like this one (which fails to quote any Maths textbooks at all, which is because it’s not in any textbooks, which is because it’s wrong).
You’re claiming the post is wrong and saying it doesn’t have any textbook citation (which is erroneous in and of itself because textbooks are not the only valid source) but you yourself don’t put down a citation for your own claim so… citation needed.
In addition, this issue isn’t a mathematical one, but a grammatical one. It’s about how we write math, not how math is (and thus the rules you’re referring to such as the Distributive Law don’t apply, as they are mathematical rules and remain constant regardless of how we write math).
It isn’t, because the ‘currently taught rules’ are on a case-by-case basis and each teacher defines this area themselves
Nope. Teachers can decide how they teach. They cannot decide what they teach. The have to teach whatever is in the curriculum for their region.
Strong juxtaposition isn’t already taught, and neither is weak juxtaposition
That’s because neither of those is a rule of Maths. The Distributive Law and Terms are, and they are already taught (they are both forms of what you call “strong juxtaposition”, but note that they are 2 different rules, so you can’t cover them both with a single rule like “strong juxtaposition”. That’s where the people who say “implicit multiplication” are going astray - trying to cover 2 rules with one).
See this part of my comment… Weak juxtaposition provides better benefits because it has less rules (and is thusly simpler)
Yep, saw it, and weak juxtaposition would break the existing rules of Maths, such as The Distributive Law and Terms. (Re)learn the existing rules, that is the point of the argument.
citation needed
Well that part’s easy - I guess you missed the other links I posted. Order of operations thread index Text book references, proofs, the works.
this issue isn’t a mathematical one, but a grammatical one
Maths isn’t a language. It’s a group of notation and rules. It has syntax, not grammar. The equation in question has used all the correct notation, and so when solving it you have to follow all the relevant rules.
Nope. Teachers can decide how they teach. They cannot decide what they teach. The have to teach whatever is in the curriculum for their region.
Yes, teachers have certain things they need to teach. That doesn’t prohibit them from teaching additional material.
That’s because neither of those is a rule of Maths. The Distributive Law and Terms are, and they are already taught (they are both forms of what you call “strong juxtaposition”, but note that they are 2 different rules, so you can’t cover them both with a single rule like “strong juxtaposition”. That’s where the people who say “implicit multiplication” are going astray - trying to cover 2 rules with one).
Yep, saw it, and weak juxtaposition would break the existing rules of Maths, such as The Distributive Law and Terms. (Re)learn the existing rules, that is the point of the argument.
Well that part’s easy - I guess you missed the other links I posted. Order of operations thread index Text book references, proofs, the works.
You argue about sources and then cite yourself as a source with a single reference that isn’t you buried in the thread on the Distributive Law? That single reference doesn’t even really touch the topic. Your only evidence in the entire thread relevant to the discussion is self-sourced. Citation still needed.
Maths isn’t a language. It’s a group of notation and rules. It has syntax, not grammar. The equation in question has used all the correct notation, and so when solving it you have to follow all the relevant rules.
You can argue semantics all you like. I would put forth that since you want sources so much, according to Merriam-Webster, grammar’s definitions include “the principles or rules of an art, science, or technique”, of which I think the syntax of mathematics qualifies, as it is a set of rules and mathematics is a science.
That doesn’t prohibit them from teaching additional material
Correct, but it can’t be something which would contradict what they do have to teach, which is what “weak juxtaposition” would do.
a single reference
I see you didn’t read the whole thread then. Keep going if you want more. Literally every Year 7-8 Maths textbook says the same thing. I’ve quoted multiple textbooks (and haven’t even covered all the ones I own).
mathematics is a science
Actually you’ll find that assertion is hotly debated.
Correct, but it can’t be something which would contradict what they do have to teach, which is what “weak juxtaposition” would do.
Citation needed.
I see you didn’t read the whole thread then. Keep going if you want more. Literally every Year 7-8 Maths textbook says the same thing. I’ve quoted multiple textbooks (and haven’t even covered all the ones I own).
If I have to search your ‘source’ for the actual source you’re trying to reference, it’s a very poor source. This is the thread I searched. Your comments only reference ‘math textbooks’, not anything specific, outside of this link which you reference twice in separate comments but again, it’s not evidence for your side, or against it, or even relevant. It gets real close to almost talking about what we want, but it never gets there.
But fine, you reference ‘multiple textbooks’ so after a bit of searching I find the only other reference you’ve made. In the very same comment you yourself state “he says that Stokes PROPOSED that /b+c be interpreted as /(b+c). He says nothing further about it, however it’s certainly not the way we interpret it now”, which is kind of what we want. We’re talking about x/y(b+c) and whether that should be x/(yb+yc) or x/y * 1/(b+c). However, there’s just one little issue. Your last part of that statement is entirely self-supported, meaning you have an uncited refutation of the side you’re arguing against, which funnily enough you did cite.
Now, maybe that latter textbook citation I found has some supporting evidence for yourself somewhere, but an additional point is that when providing evidence and a source to support your argument you should probably make it easy to find the evidence you speak of. I’m certainly not going to spend a great amount of effort trying to disprove myself over an anonymous internet argument, and I believe I’ve already done my due diligence.
Citation needed.
So you think it’s ok to teach contradictory stuff to them in Maths? 🤣 Ok sure, fine, go ahead and find me a Maths textbook which has “weak juxtaposition” in it. I’ll wait.
Your comments only reference ‘math textbooks’, not anything specific
So you’re telling me you can’t see the Maths textbook screenshots/photo’s?
outside of this link which you reference twice in separate comments but again, it’s not evidence for your side, or against it, or even relevant
Lennes was complaining that literally no textbooks he mentioned were following “weak juxtaposition”, and you think that’s not relevant to establishing that no textbooks used “weak juxtaposition” 100 years ago?
We’re talking about x/y(b+c) and whether that should be x/(yb+yc) or x/y * 1/(b+c).
It’s in literally the first textbook screenshot, which if I’m understanding you right you can’t see? (see screenshot of the screenshot above)
you have an uncited refutation of the side you’re arguing against, which funnily enough you did cite.
Ah, no. Lennes was complaining about textbooks who were obeying Terms/The Distributive Law. His own letter shows us that they all (the ones he mentioned) were doing the same thing then that we do now. Plus my first (and later) screenshot(s).
Also it’s in Cajori, but I didn’t find it until later. I don’t remember what page it was, but it’s in Cajori and you have the reference for it there already.
you should probably make it easy to find the evidence you speak of
Well I’m not sure how you didn’t see all the screenshots. They’re hard to miss on my computer!
P.S. if you DID want to indicate “weak juxtaposition”, then you just put a multiplication symbol, and then yes it would be done as “M” in BEDMAS, because it’s no longer the coefficient of a bracketed term (to be solved as part of “B”), but a separate term.
6/2(1+2)=6/(2+4)=6/6=1
6/2x(1+2)=6/2x3=3x3=9
Hi, I’m stupid, is it 1+2 first, then multiple it by 2, then divide 6 by 6?
Or is it 1+2, then divide 6 by 2, then multiple?
I think it’s the first one but I’ve got no idea.
It’s the first, as per The Distributive Law and Terms. It could only ever be the second if the 6/2 was in brackets. i.e. (6/2)(1+2).
It’s actually “both”. There are two conventions. One is a bit more popular in science and engineering and the other one in the general population. It’s actually even more complicated than that (thus the long blog post) but the most correct answer would be to point out that the implicit multiplication after the division is ambiguous. So it’s not really “solvable” in that form without context.
You’d think we would’ve solve this with Einstein or Aristotle or something.
Indeed it was already solved more than 100 years ago. The issue isn’t that it’s “ambiguous” - it isn’t - it’s that people have forgotten what they were taught (students don’t get this wrong - only adults). i.e. The Distributive Law and Terms.
deleted by creator
My years out of school has made me forget about how division notation is actually supposed to work and how genuinely useless the ÷ and / symbols are outside the most basic two-number problems. And it’s entirely me being dumb because I’ve already written problems as 6÷(2(1+2)) to account for it before. Me brain dun work right ;~;
There’s no forms consensus on which one is correct. To avoid misunderstanding mathematicians use a horizontal bar.
Only if it’s a fraction. If it’s 2 separate terms then you use whatever your country uses for division - obelus or colon or whatever. They have to be 2 separate things, otherwise how would you write to divide by a fraction?