For anyone wondering it’s because the bowling ball slightly pulls the earth faster toward itself. This amount is too small to possibly measure. But imagine if the bowling ball were the size of another Earth and it’s easier to see why it happens.
Thanks for the non-jargon version
There’s a video of astronauts doing the heavy thing vs feather in vacuum experiment. I think it was a hammer rather than a bowling ball tho.
they did it on the moon
Yeah
I think the answer to this question changes based on your interpretation of ‘falling faster’. I.e. whether that refers to the total time between the start and end of the fall or to the speed of the feather/ball to an outside observer.
This only true when you drop it like it’s hot.
Great, now we need to run the experiment with the bowling ball and feather on opposite sides of the planet!
I haven’t seen anyone mention this yet, so here’s how I understand it. The feather falls slower in non-vacuum conditions because it reaches its terminal velocity much more quickly than the bowling ball.
Edit: terminal velocity: https://en.m.wikipedia.org/wiki/Terminal_velocity
How would it reach terminal velocity in a vacuum?
I imagine terminal velocity with no air resistance would be 9.8m/s/s. I was saying that the feather reaches terminal velocity more quickly than a bowling ball in non-vacuum conditions
Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration
Objects in a vacuum have no drag and no terminal velocity…